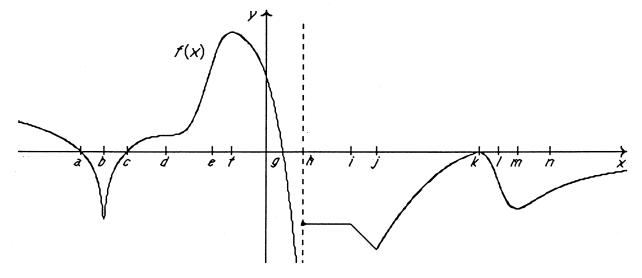
Chapter 3 For use after Article 3.4.

An Unusual Function



1. The function *f* drawn above would be difficult to describe algebraically; nevertheless, it has interesting geometric features for which calculus provides descriptions. Using the textbook definitions and some freedom of artistic judgment, name the *x* coordinate(s) for:

a) roots of f(x) = 0

b) points of discontinuity of *f*

c) critical points _____

d) intervals over which f increases _____

e) intervals over which f decreases _____

f) relative maxima _____

g) absolute maxima _____

h) relative minima

i) absolute minima _____

j) intervals over which f is concave up _____

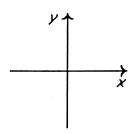
k) intervals over which f is concave down _____

l) points of inflection _____

m) equation of horizontal asymptote(s)

n) equation of vertical asymptote(s)

b) Note that $x^5 + x^4y - xy^2 - y^3 = (x + y)(x^2 + y)(x^2 - y) = 0$. Use this factorization to graph the function y = f(x), described earlier.



- c) Evaluate $\lim_{x \to 0^+} \frac{f(x) f(0)}{x 0} =$
- d) Evaluate $\lim_{x\to 0^-} \frac{f(x) f(0)}{x 0} =$
- e) f'(0) = _____ Why? ____

Concept Connectors

- **3.** If f(g(x)) = g(f(x)) = x, what is the relationship between functions f and g?
- **4.** Find an expression for g'(x) using f(g(x)) = x, assuming both f and g are differentiable.
- **5.** Let f and its inverse, f^{-1} , be differentiable functions with f(x) values at x = 1, x = 2, and x = 3 as indicated in the table below:

x	f(x)	f'(x)
1	3	4
2	1	5
3	2	6

HINT:

- a) Point on f
 - oint on *t* (1, 3)
 - (2, 1) (3, 2)
- ⇒ ⇒
- ⇒ →
- Point on f^{-1}
 - (3, 1)
- b) Find the derivative of f^{-1} at $\begin{cases} x = 1 \\ x = 2 \end{cases}$